Institut für Fertigungstechnik und Werkzeugmaschinen Forschung Publikationen
Investigation on the Dynamic Behaviour of an Ultrasonic-Levitation Magnetic Guiding System

Process limits in high‑performance peel grinding of hardened steel components with coarse CBN grinding wheels

Kategorien Zeitschriften/Aufsätze (reviewed)
Jahr 2022
Autoren Denkena, B., Krödel, A., Wilckens, M.:
Veröffentlicht in The International Journal of Advanced Manufacturing Technology (2022), published online 04. April 2022, 12 Seiten.
Beschreibung

Recent developments in the production processes for cubic boron nitride (CBN) abrasive grains have led to commercially available grain sizes larger than lg>300 µm. These superabrasive grains allow higher material removal rates during grinding of hardened steel components. Currently, these components are pre-machined by turning processes before being hardened and eventually fnished by grinding. However, the turning process can be substituted by grinding with coarse CBN-grains since higher depths of cut are achievable when machining hardened components. This paper investigates the process behaviour of vitrifed and electroplated grinding wheels with large grain sizes during the machining of hardened steel components. Process forces, wear behaviour and workpiece surface roughness are investigated for three diferent grain sizes, and the process limits of both bond types are examined. The investigations show that vitrifed tools do not fully suit the demands for peel grinding process with high material removal rates since wear by bond breakage occurs. The electroplated tools on the other hand are capable of very high material removal rates. Their wear behaviour is characterized by clogging of the chip space if the process limit is reached. Even so, both tools outperform a standard hard-turning process in terms of process time by 74% and 94% respectively. This process time reduction in combination with the possibility to use the same (machine) tool to machine both soft and hard sections of a workpiece adds fexibility to current process chains.  

DOI https://doi.org/10.1007/s00170-022-09026-1