ForschungPublikationen
Smart and energy-efficient dust suction concept for milling of fibrereinforced plastics

Smart and energy-efficient dust suction concept for milling of fibrereinforced plastics

Kategorien Zeitschriften/Aufsätze (reviewed)
Jahr 2017
Autoren Denkena, B., Dittrich, M.-A., Rahner, B.-H.:
Veröffentlicht in Production Engineering Research and Development (WGP), Volume 11 (2017) Number 6, S. 723-729.
Beschreibung

Fibre-reinforced plastic (FRP) are becoming increasingly important in aerospace and premium automotive applications. Usually, the manufacturing of FRP components requires dry machining which generates large quantities of dust. Because of their small size, the dust particles are extremely harmful to machine components and the operator’s physical health. To prevent long-term damage an effective suction system is required. Currently, extraction systems are subsequently integrated into conventional machine tools with no regard to energy efficiency. Hence, this paper introduces the development of an energyefficient and intelligent dust suction concept for dry machining of FRP. Numerical flow simulations are used to investigate the effectiveness of a central suction as well as local suction at the cutting tool. In order to evaluate the newly developed
concept, the amount of extracted particles along with the necessary volumetric flow rates are assessed. The simulation results demonstrate an improved dust particle extraction and an energy saving potential of up to 70%.