Logo Leibniz Universität Hannover
Logo: IFW - Institut für Fertigungstechnik und Werkzeugmaschinen
Logo Leibniz Universität Hannover
Logo: IFW - Institut für Fertigungstechnik und Werkzeugmaschinen
  • Zielgruppen
  • Suche
 

Denkena, B., Pape, O., Grove, T., Mücke, A.:

Titel:Advanced process design for re-contouring using a time-domain dynamic material removal simulation
Jahr:2019
Stichworte:Titanium, Milling, Simulation
Kategorie:Konferenz (reviewed)

Abstract

The repair of components often requires the removal of excess weld material. This removal is considered as re-contouring. Re-contouring processes have to be designed individually for each case of damage to fulfil the high quality requirements. Therefore, a prognosis of the machined surface topography is crucial. The material removal simulation introduced in this paper allows the prediction of process stability and surface topography for 5-axis ball end milling including dynamic effects. Different process strategies for re-contouring of Ti-6Al-4V welds are examined. It is shown, that selecting suitable process parameters can lead to high surface quality while maintaining productivity.