Completed projects at the IFW

  • Development and research of a tool system for the compensation of the center course
    In deep drilling, boreholes with a length-to-diameter ratio of more than 200 can be productively produced. To ensure the functionality of deep holes, they must have the lowest possible center course in addition to typical quality requirements (e.g. diameter accuracy). The center course is the offset of the real bore axis from the ideal bore axis. The aim of the project is to develop a compensation unit that detects the center course in the process and corrects it simultaneously by means of an active tool system. Among other things, a measuring system is being developed for this purpose.
    Led by: Prof. Dr.-Ing. Berend Denkena
    Team: Niklas Klages
    Year: 2020
    Funding: AIF IGF
    Duration: 01/2019 – 12/2020
    © Niklas Klages
  • Development of a force-based electric feed unit and process monitoring for mobile wire saws
    Mobile rope grinding is a widely used method for cutting large-volume components. The process is used in the construction industry, demolition and natural stone quarrying. Nowadays, productivity and process reliability are determined exclusively by the experience of the machine operator. For example, process errors, such as the pushing up of cutting beads or eccentrically worn cutting beads, can only be identified manually by the machine operator during process interruptions. Accordingly, the aim of the research project is to develop a process monitoring system for mobile rope grinding. To this end, new types of measuring systems are being developed for rope grinding, among other things.
    Led by: Prof. Dr.-Ing. Berend Denkena
    Team: Björn-Holger Rahner
    Year: 2019
    Funding: ZIM
    Duration: 06/2019-11/2021
    © IFW, Rahner
  • Erforschung der Eignung additiv gefertigter Komponenten für den Einsatz in Werkzeugmaschinen am Beispiel einer Hauptspindel (Add-Spin)
    Additive Fertigungsverfahren (AF) haben in den vergangenen Jahren stark an Bedeutung gewonnen. Der Einsatz von AF bietet die Möglichkeit, individuelle, funktionsgerechtere Bauteile mit minimalem Materialeinsatz zu fertigen, die mithilfe herkömmlicher Fertigungsverfahren nicht oder nur mit großem Aufwand zu fertigen sind.
    Year: 2019
    Funding: AiF IGF
    Duration: 01/2019-12/2020
  • Deep Rolled Welds: Increased Fatigue Strength of Welded Joints in Wind Energy by Deep Rolling
    The fatigue strength of butt joints is significantly dependent on their residual stress state. Deep rolling is a manufacturing process for introducing residual compressive stresses that have a positive effect on fatigue strength. In this project, the deep rolling process for butt joints of thick plates is qualified and the influence of the process on fatigue crack growth is quantified.
    Year: 2019
    Funding: AiF-IGF
    Duration: 06/2019 – 11/2021
    © IFW, Hb
  • Surface formation during milling under consideration of the tool microgeometry
    The aim of this research project is to understand surface expression using flank milling as an example, with particular emphasis on tool microgeometry and process manipulated variables. An essential aspect of the project is the development of methods for the extension of machining simulations by higher order geometric features. For this purpose, the approach of the continuous wavelet transformation is used for the first time and further developed accordingly.
    Led by: Henke Nordmeyer
    Year: 2019
    Funding: DFG
    Duration: 01/2019-07/2022
    © IFW
  • Principles of a multi-coordinate positioning system for metal cutting machine tools
    Nowadays, machine tool feed drives are mostly systems with one degree of freedom (dof). By combining multiple systems, movements in multiple dof become relizable. However, this leads to a reduction in dynamics and accuracy of the system. With a multi-dof feed drive system significant benefits can be achieved. The scope of this project is to investigate a system, consisting of a planar direct drive combined with a contactless electromagnetic planar guide. Firstly, a test rig will be designed, realized and tested. Then the feed drive system will be extensively analyzed in terms of accuracy, dynamics and structural behavior. In a second period it is pursued to investigate the system in cutting processes.
    Year: 2018
    Funding: DFG
    Duration: 01/15 - 06/17
  • Hybrid Spindle
    Universal spindles currently on the market are often only suitable for one of the two very productive processes of high-speed or high-performance machining due to their limited working range. The aim of the project is to develop a "hybrid" spindle that can switch between these two operating areas depending on the process, since in this case a wide range of materials can be processed cost-effectively and efficiently on the same machine.
    Year: 2018
    Funding: AiF-IGF
    Duration: 06/17 - 06/19
  • Sensing Guide Carriage (SGC)
    Micro strain gauges in notches allow highly sensitive force measurement. In combination with intelligent sensor placement and signal processing sensory properties can be added to structural machine tool parts without loss of stiffness. In order to reduce engineering effort, the development of sensing guide carriages as standard machine tool components is subject of this proposal.
    Year: 2018
    Funding: KIMM
    Duration: 03/18 - 08/20
  • WiZuBe - Economic and reliable condition monitoring
    The aim of this research project is to develop a user-friendly and reliable condition monitoring system for ball screws in machine tools, which parameters itself as autonomously as possible and adapts itself to the terms of use of the machine tool.
    Year: 2018
    Funding: AiF-IGF
    Duration: 03/18 - 08/20
  • Rotor Cooling – Cooling of motor spindle shafts
    During the operation of motor spindles, heat losses occur in the motor and bearings. This heat leads to a series of undesired effects within the spindle-bearing-system. Therefore, the aim of this project is to develop a shaft cooling system based on lamellar heat exchangers.
    Year: 2018
    Funding: Industrie
    Duration: 08/07 - 10/18
  • SensDrill - Sensory BTA deep hole drilling tool to observe the center variation
    BTA deep-hole drilling is characterized by an external oil supply between the bore wall and the drill head. The oil transports the produced chips through the drill head and the drill pipe to the outside. To increase process reliability, the Institut für Fertigungstechnik und Werkzeugmaschinen (IFW) Hannover is developing a sensory drill pipe together with BTA-Tiefbohrsysteme GmbH. The aim is to be able to determine and monitor the center deviation during machining.
    Year: 2018
    Funding: ZIM - BMWi
    Duration: 10/16 - 09/18
  • Indirect residual stress measurement using the ESPI wellbore method
    Qualification of the ESPI hole-drilling method for the measurement of residual stresses in steel, aluminium and titanium. Determination of optimal drilling and measuring parameters for reliable and reproducible residual stress measurement.
    Year: 2018
    Funding: Wege in die Forschung / Leibniz Universität Hannover
    Duration: 05/17 - 04/18
  • Tribologically tailored cylinder liner
    This project’s objective is to machine microscopic dimple to the inner surface of cylinder liners. These dimples improve the lubrication and thus reduce the friction and wear.
    Year: 2018
    Funding: DFG
    Duration: 02/16 - 12/18
  • „SensSpann“ – Sensory Clamping Heads for machine tools
    Clamping heads are used for the clamping of workpieces and workpiece pallets in machine tools. They enable the clamping of workpieces with a high geometric repeatability. The aim of this project is the development of a new mechatronic clamping head to enable a force-based, continuous condition monitoring.
    Year: 2018
    Funding: ZIM - BMWi
    Duration: 2/18 - 1/20
  • CAxPoli - Technological CAD/CAM chain for the automated polishing of geometrically complex workpieces
    In the research project "CAxPoli - Technological CAD/CAM chain for the automated polishing of geometrically complex workpieces" the automated machining process is investigated using the example of tooth polishing by returning the actual machining results to process planning. The aim is to select and adjust the appropriate process parameters automatically depending on the processing status. The automatic machining of complex workpieces shall be achieved by the feedback of the machining result as well as by a continuous build-up of knowledge from previous machining processes.
    Year: 2018
    Funding: AiF
    Duration: 01.10.2016 - 30.09.2018
  • Knowledge transfer project SPP 1180: „Effective process design for tool grinding in consideration of the process-structure interactions“
    An important quality criterion in the process design is the prevention of geometric shape deviations due to interactions of process and workpiece. The deformation of the workpiece is primarily determined by the process forces, the material properties and the changing workpiece shape over time. Due to these relationships, a large number of experiments is required for the design of tool grinding processes until the process is customised. The aim of this project is the development and research of a method for the model-based design of individual tool grinding processes in industrial environments.
    Year: 2017
    Funding: DFG
    Duration: 01.01.2017-31.12.2018
  • ReTool - Automatic Regeneration of Cemented Carbide Tools for the Production of new Tools
    The aim of the research project is to develop a resource efficient recycling process of cemented carbide milling tools. This is to be achieved by using worn tools as blanks in a regenerative tool grinding process. The process enables a significant saving in energy and material, which is unavoidable in conventional carbide recycling processes through the pulverizing, impurities removal and sintering of the cemented carbide.
    Year: 2015
    Funding: BMWi
    Duration: 03/2014 – 12/2016
  • FOR 1845 „Ultra-Precision High Performance Cutting“
    The research group FOR 1845 “UP-HPC” investigates scientific methods and innovative technologies in order to increase the machining performance in ultra-precision cutting. In cooperation with the University of Bremen, the Institute of Production Engineering and Machine Tools (IFW) explores the potential of electromagnetic linear guides and model-based control strategies for use in ultra-precision machine tools.
    Year: 2015
    Funding: DFG
    Duration: 01.04.2014 – 31.03.2020
  • SFB871-B2: "Dexterous regeneration cell"
    The subproject B2 ("dexterous regeneration cell") of the SFB871 investigates the technology-based, re-contouring of complex capital goods by milling. Both, process and machine technology fundamentals are derived.
    Year: 2011
    Funding: DFG
    Duration: 01/2014 – 06/2022